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Cancer and cardiovascular diseases (CVD) often share common risk factors, and patients with CVD who develop cancer are at high risk of experi-
encing major adverse cardiovascular events. Additionally, cancer treatment can induce short- and long-term adverse cardiovascular events. Given the 
improvement in oncological patients’ prognosis, the burden in this vulnerable population is slowly shifting towards increased cardiovascular mor-
tality. Consequently, the field of cardio-oncology is steadily expanding, prompting the need for new markers to stratify and monitor the cardiovas-
cular risk in oncological patients before, during, and after the completion of treatment. Advanced non-invasive cardiac imaging has raised great 
interest in the early detection of CVD and cardiotoxicity in oncological patients. Nuclear medicine has long been a pivotal exam to robustly assess 
and monitor the cardiac function of patients undergoing potentially cardiotoxic chemotherapies. In addition, recent radiotracers have shown great 
interest in the early detection of cancer-treatment-related cardiotoxicity. In this review, we summarize the current and emerging nuclear cardiology 
tools that can help identify cardiotoxicity and assess the cardiovascular risk in patients undergoing cancer treatments and discuss the specific role of 
nuclear cardiology alongside other non-invasive imaging techniques.  
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Graphical Abstract   

Pathophysiological pathways interconnecting cancers and CVD: genetic predispositions, cardiovascular risk factors, and cancer-treatment-related 
cardiotoxicity. CVD in cancer patients (and corresponding nuclear cardiology tools) consist mainly of cancer-treatment-related cardiac dysfunction 
(explored with MUGA/ERNA), myocardial ischaemia (with nuclear MPI), and myocarditis (with 18F-FDG PET). Abbreviations: 18F-FDG, fluor-18- 
radiolabelled fluorodeoxyglucose; CVD, cardiovascular diseases; ERNA, equilibrium radionuclide angiography; MPI, myocardial perfusion imaging; 
MUGA, multigated acquisition; PET, positron emission tomography.  

Keywords cardio-oncology • nuclear cardiology • PET • scintigraphy • FDG • myocardial perfusion imaging • CMR • 
echocardiography • CTRCD  

Introduction 
Cancer and cardiovascular diseases (CVD), leading mortality causes in 
high-income countries,1 are interconnected by common pathophysio-
logical mechanisms2 and risk factors.3,4 Consequently, patients with 
cancer have an increased risk of CVD and major adverse cardiovascular 
events (MACE). Vice versa, cardiovascular risk factors (CVRFs) increase 
cancer risk.5–7 Additionally, cancer treatments induce short- and long- 
term cardiotoxicity.8,9 The prognostic improvement of oncological 
patients is slowly shifting their burden from cancer to cardiovascular 
mortality.10 Hence, cardio-oncology is a steadily expanding field, as evi-
denced by the recent publication of the first European Society of 
Cardiology (ESC) cardio-oncology guidelines,11 prompting the need 
for cardiovascular risk stratification markers in oncological patients.12,13 

Despite being challenged by echocardiography and cardiac magnetic 
resonance (CMR),14 nuclear imaging remains a contemporary modality 
in patients receiving cardiotoxic therapies. 

In this article, we briefly summarize the central mechanisms respon-
sible for cancer-treatment-induced cardiotoxicity, review the main es-
tablished and emergent nuclear cardiology tools useful in cancer 

settings, and discuss the role of nuclear medicine alongside echocardi-
ography and CMR. Although also beneficial for managing cardiac tu-
mours,15,16 this review will not cover this topic. 

Mechanisms of interaction between 
cancer and CVD 
CVD and cancer are two sides of the same coin,17 sharing identical 
pathophysiological pathways18 (Figure 1). 

Risk factors 
Typical CVRFs include age, diabetes, hypertension, smoking, dyslipidae-
mia, and overweight,19 all of which concomitantly increase cancer 
risk.20 By promoting inflammation and oxidative stress, diabetes favours 
a pro-oncogenic environment.21 Similarly, epidemiological data suggest 
a correlation between hypertension and dyslipidaemia on the one hand 
and cancer genesis on the other.22 Smoking promotes atherosclerosis  
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and cancer,23,24 and a plethoric adipose tissue triggers oncogenic in-
flammatory molecules.25 

Genetic factors 
Intrinsic factors also predispose to CVD and cancer.26 For instance, 
specific age-related somatic mutations, labelled clonal haematopoiesis 
of indeterminate potential (CHIP), increase the risk of haematological 
malignancy27 and CVD.28 Other genes involved in drug delivery and 
metabolism modulate the risk of cancer-therapy-induced cardiotoxi-
city,26 either by increasing it, such as ATP-binding cassette transporters 
ABCB4 and ABCC, or by decreasing it, for example, ATP-binding trans-
porters (ABCB1) and solute carriers (SLC28A3).26 

Cancer-treatment-related cardiotoxicity 
Cancer-treatment-induced cardiotoxicity is a critical contributor to 
CVD18 (Table 1). Cancer-treatment-related cardiac dysfunction 
(CTRCD), i.e. left ventricular (LV) dysfunction induced by cancer treat-
ment, is the most common cardiotoxicity type.8 Two types of CTRCD 
are distinguished.29,30 Type I CTRCD, classically caused by anthracy-
clines, induces direct cumulative, dose-related, and usually irreversible 
cardiomyocyte damage. Type II CTRCD, traditionally induced by tras-
tuzumab,29 is a reversible and dose-independent myocardial 

dysfunction without structural alterations. Cancer treatment can also 
induce coronary artery disease (CAD), notably vasospasm and arterial 
thrombosis.31,32 Likewise, chest radiotherapy favours atherosclerosis 
and fibrosis via inflammatory cascades in the coronary vessels.6,33 

Lately, the introduction of immune checkpoint inhibitors (ICI) to the 
cancer armamentarium was accompanied by increasing reports of 
immune-related adverse events (IRAEs),34,35 including myocarditis.36 

Role of imaging for the early 
detection of CVD in cancer patients 
The European Society for Medical Oncology guidelines highlight the 
need for an early screening of CVRFs and close cardiovascular monitor-
ing of cancer patients.13 This assessment includes a baseline evaluation 
of LV ejection fraction (LVEF) to guide the cancer treatment choice and 
the need for cardioprotective therapies.13 However, LVEF alone can 
prove insufficient, since an LVEF drop is often a late-stage manifestation 
of cardiac damage.37,38 Global longitudinal strain (GLS) assessment 
using echocardiography or CMR is a more sensitive marker of cardiac 
dysfunction and is, therefore, recommended.14 Nonetheless, GLS is 
limited by scarce reproducibility,39 prompting the need for alternative 
tools. 

Figure 1 Mechanisms of CVD in cancer patients. Abbreviations: ABCB2, ABC transporter B family member 2 gene; ABCC1, ATP-binding cassette 
subfamily C member 1 gene; ABCC2, ATP-binding cassette subfamily C member 2 gene; CBR3, carbonyl reductase 3 gene; CHIP, clonal haematopoiesis 
of indeterminate potential; GSTM1, glutathione S-transferase mu 1 gene; HAS3, hyaluronan synthase 3 gene; RARG, retinoic acid receptor gene.   
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Nuclear medicine imaging and particularly multigated acquisition 
(MUGA) scintigraphy have historically been at the frontline of LV mon-
itoring in oncological patients.40,41 Although challenged by CMR,42 nu-
clear cardiology provides critical information for diagnosing, 
monitoring, and risk-stratifying cancer patients15,16,43–45 (Table 2). In 
the following part, we will review how nuclear cardiology can detect 
cardiac complications in oncological patients and discuss its role along-
side echocardiography and CMR. 

Diagnosis of 
cancer-treatment-related toxicity 
CTRCD and LV systolic dysfunction 
The ESC defines CTRCD as (i) a ≥10% LVEF decrease from baseline to 
below 50%, (ii) with a GLS drop of ≥15% from baseline, confirmed by a 
2–3-week repeat study, in the context of cancer treatment.14 While 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Main types of cancer treatments and related toxic effects 

Therapeutic class Main treatment-induced toxicity mechanisms  

Anthracyclines Induction of oxidative stress, impaired autophagy, type II topoisomerase poisoning 

Trastuzumab Inhibition of epidermal growth factor receptor 2 

Fluoropyrimidines Induction of oxidative stress in cardiomyocytes, vasospasm by favouring endothelial and 

smooth cell dysfunction, coronary artery thrombosis 

Platinum drugs Induction of oxidative stress and of direct damage to cardiomyocytes and mitochondria, 

platelet aggregation 

Taxanes Direct cardiomyocyte and mitochondrial damage, alteration of cell division and microtubule 

dysfunction, oxidative stress, platelet aggregation, endothelial injury, haemorrhagic 

myopericarditis 

Vascular endothelial growth factor (VEGF) inhibitors (tyrosine 

kinase inhibitors, monoclonal antibodies) 

Arterial and venous thrombosis 

Immune checkpoint inhibitors Increased CD4 and CD8 lymphocyte infiltration inducing myopericarditis and arrhythmia 

Radiotherapy Coronary atherosclerosis and fibrosis by triggering acute and long-term coronary inflammation  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Main types of cancer-treatment-related cardiotoxicities and main cardiac cancers with the corresponding 
nuclear imaging diagnostic tools   

Type of 
toxicity/ 
disease 

Most common toxic agents Imaging tools Comments  

Cardiotoxicity CTRCD Anthracyclines, alkylating agents, TKI, proteasome 

inhibitors 

MUGA (ERNA SPECT for RV 

function) 

±First-pass 18F-FDG PET 

Diagnosis and monitoring of LV 

dysfunction 

Coronary artery 

disease 

Alkylating-like agents, fluoropyrimidine (vasospasm) 

taxanes, radiotherapy, hormonotherapy 

(Arimidex, Aromasin, Femara) 

SPECT MPI 

PET MPI 

CACS derivable from hybrid CT 

imaging 

CMVD with PET MPI 
LVEF from SPECT and PET MPI 

Myocarditis Alkylating agents, immune checkpoint inhibitors 18F-FDG PET 

±68Ga-SSTR PET 
±68Ga-FAPI PET 

±89Zr-DFO-CD4 and 
89Zr-DFO-CD8a PET 

Potential role for hybrid PET/CMR 

Specific 
disease 

Cardiac tumours NA 18F-FDG for aggressive primary 
tumours and NECs 
68Ga-SSTR for low-grade 

NETs 

Diagnosis and staging 

Abbreviations: ±, optional or used in research studies; 18F-FDG, fluor-18-radiolabelled fluorodeoxyglucose; 68Ga-FAPI, gallium-68-radiolabelled fibroblast activation protein inhibitors; 
68Ga-SSTR, gallium-68-radiolabelled somatostatin receptor; 89Zr-DFO-CD4, zirconium-89-radiolabelled desferrioxamine-CD4; 89Zr-DFO-CD8a, zirconium-89-radiolabelled 
desferrioxamine-CD8a; 99mTc, technetium-99m; 123I-MIBG, iodine-123 metaiodobenzylguanidine; ATTR, transthyretin amyloidosis; CA, cardiac amyloidosis; CACS, coronary artery 
calcium score; CMVD, coronary microvascular dysfunction; CMR, cardiac magnetic resonance; CT, computed tomography; CTRCD, cancer-treatment-related cardiac dysfunction; 
ERNA, equilibrium radionuclide angiography; LVEF, left ventricular ejection fraction; MPI, myocardial perfusion imaging; MUGA, multigated acquisition; NA, not applicable; NEC, 
neuroendocrine carcinoma; NET, neuroendocrine tumour; PET, positron emission tomography; SPECT, single-photon emission computed tomography; TKI, tyrosine kinase inhibitors.   
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only echocardiography and CMR can estimate GLS,46 MUGA robustly 
determines LVEF.47,48 In MUGA, cardiac volumes are derived from 
heart-centred images of the patient’s own radiolabelled erythrocytes49 

and are therefore not influenced by geometric assumptions about the 
myocardial wall.50 Three types of MUGA are distinguished: (i) first-pass 
MUGA, (ii) planar equilibrium radionuclide angiography (ERNA), and 
(iii) single-photon emission computed tomography (SPECT) ERNA. 
In practice, first-pass MUGA is limited to specific indications [right ven-
tricular ejection fraction (RVEF) and shunt assessment49,51], and only 
ERNA is used to assess CTRCD. Planar ERNA is acquired when the 
radiotracer has reached equilibrium and allows measuring LVEF52 

(Figure 2), not RVEF, because of the superposition of heart structures. 
However, ERNA can also be performed with three-dimensional (3D) 
gated SPECT, which enables the delineation of both LVEF and 
RVEF.49,53–56 Overall, MUGA displays a high inter- and intra-observer 
reproducibility for LVEF measurement,57 which is crucial for serial 
follow-up during anticancer treatment.14,58 MUGA also helps select pa-
tients who can safely tolerate higher cumulative anthracycline doses, i.e. 
asymptomatic patients with LVEF > 40% and a drop in LVEF <  
10%,13,41 significantly reducing heart failure occurrence.59 Although in 
good agreement,60 LVEF tends to be higher with SPECT than with pla-
nar ERNA,61 which needs to be taken into consideration for 

Figure 2 LV function assessment with nuclear cardiology. Left panel: ERNA techniques for LVEF assessment based on radiolabelled erythrocytes’ 
activity. Planar ERNA: end-diastolic and end-systolic LV volumes derived from LAO projections. Additional incidences include LP and anterior projec-
tions. SPECT ERNA: 3D reconstructions allowing LVEF/RVEF measurement. Right panel: NH3 PET MPI during end-diastole and end-systole enabling 
EDV/ESV estimation. Accurate volume measurement with MPI necessitates preserved myocardial perfusion. Diastolic (D) function can also be studied. 
Abbreviations: ANT, anterior; CHIP, clonal haematopoiesis of indeterminate potential; EDV, end-diastolic volume; ERNA, equilibrium radionuclide 
angiography; ESV, end-systolic volume; HLA, horizontal long axis; LAO, left anterior oblique; LP, left profile; LV, left ventricle; LVEF, left ventricular 
ejection fraction; MFR, mean filling rate during the first third of diastole; mL, millilitres; mL/s, millilitres per second; MPI, myocardial perfusion imaging; 
PER, peak ejection rate; NH3, ammonium; PET, positron emission tomography; PFR, peak filling rate; PFR/2, peak filling rate during the first half of dia-
stole; RV, right ventricle; RVEF, right ventricular ejection fraction; SA, short axis; SPECT, single-photon emission computed tomography; VLA, vertical 
long axis.   
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monitoring.14 Similarly, in breast cancer patients, MUGA gives slightly 
lower LVEF values than CMR.62 As such, when using MUGA, for an 
LVEF threshold of 50%, this difference could result in 35% more pa-
tients being diagnosed with CTRCD than with CMR.62 Hence, given 
that LV volumes tend to shrink and LVEF to increase after meno-
pause,63 CTRCD thresholds might need to be adapted in women.64 

Regarding surveillance, the European and American nuclear medicine 
societies recently issued an expert consensus for monitoring LVEF by 
ERNA for patients receiving anthracyclines,65 which has been 
summarized in Figure 3. 

A major drawback of MUGA is radiation exposure. Indeed, MUGA 
requires the injection of 555–1110 MBq (7–15 MBq/kg in children) of 
radiotracers,65 which in case of serial follow-up increases theoretically 
(albeit minimally) cancer risk.66–68 Cadmium-zinc-telluride 
(CZT)-based cameras, which detectors are more sensitive than con-
ventional sodium iodide (NaI) ones, enable a two- to three-fold reduc-
tion in injected activity without altering image quality,60,69,70 hence 
decreasing the radiation burden. CZT-derived LVEF highly correlates 
with the one obtained from planar NaI detectors.71 CZT-based 
SPECT ERNA is also in high agreement with CMR for RVEF.72 

Interestingly, LVEF can be obtained from fluor-18-radiolabelled fluoro-
deoxyglucose positron emission tomography (18F-FDG PET) gated 
first-pass acquisitions, showing excellent concordance with planar 
ERNA.73 Given that 18F-FDG PET is the mainstay for cancer staging, 
this elegant approach allows simultaneously measuring LVEF with no 
additional radiation exposure. However, first-pass cardiac 18F-FDG ac-
quisitions result in a prolonged acquisition time (5 min), reducing the 
available scanning time for other patients. 

In practice, MUGA has long been supplanted by the more readily 
available and non-irradiating echocardiography and CMR (Figure 4). 
Transthoracic echocardiography (TTE) is the frontline risk stratification 
exam, owing to its wide availability, harmfulness, ability to assess 
morphology (including valves), function, and GLS. Whenever available, 
3D echocardiography is preferred over 2D, given its higher reproduci-
bility for LVEF and GLS assessment.74–76 GLS detects early signs of sys-
tolic dysfunction before any LVEF drop, with a change in GLS ≥ 15% 
predicting the risk of CTRCD.46 Importantly, a GLS-based cardiopro-
tective strategy reduces the rate of CTRCD in patients undergoing an-
thracycline.77 Nonetheless, echography strain measurements lack 
inter-device standardization, which limits their routine use.78 In case 
of reduced acoustic window or low image quality, CMR is recom-
mended as a second-line technique.11,75 CMR is considered the refer-
ence exam to calculate cardiac volumes and function and can detect 
even minor LVEF impairments and volume changes.75 The latter is par-
ticularly important in patients undergoing anticancer treatments, in 
whom CTRCD can manifest as an isolated LV end-diastolic volume re-
duction.79 Moreover, CMR accurately determines RVEF, which can be 
asymptomatically reduced in cancer survivors.80 Besides volumes and 
strain assessment, CMR is a promising tool for the early detection of 
cancer-treatment-related myocardial oedema and fibrosis via T1/T2 
mapping and extracellular volume (ECV) measurement.81 Increased 
T1/T2 relaxation times hold promise to predict subsequent 
CTRCD,81 although there is a significant overlap between mapping 
parameters of patients who develop CTRCD and those who do not.82 

During cancer treatment, echocardiography is the preferred modal-
ity for monitoring cardiac function.14 Surveillance frequency depends 

Figure 3 SNMMI/EANM Guidelines for ERNA-based LVEF monitoring in anthracycline-treated patients. Abbreviations: EANM, European 
Association of Nuclear Medicine; ECG, electrocardiogram; ERNA, equilibrium radionuclide angiography; LVEF, left ventricular ejection fraction; 
SNMMI, Society of Nuclear Medicine and Molecular Imaging.   
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on a cardiotoxicity risk profile based on patient- and treatment-related 
factors.14 Importantly, given the inter-imaging variability, it is crucial to 
perform follow-up using the same modality.83 Indeed, minor LVEF var-
iations are essential to detect, as they could be an early sign of cardiac 
toxicity. Compared with CMR, 2D and 3D TTE tend to underestimate 
LV volumes.84 Similarly, limits of agreement between MUGA and CMR 
often exceed ±10%,48 which could lead to incorrectly classifying pa-
tients with CTRCD. In this regard, MUGA’s radiation exposure argues 
against its systematic use for the follow-up of patients undergoing antic-
ancer treatment. 

After the end of treatment, patients who developed CTRCD should 
be monitored using echocardiography. In patients in whom a cardiac 
medication was introduced to mitigate treatment side effects, CMR is 
an option to assess treatment response.14 

In summary, the 2022 ESC Guidelines on cardio-oncology only rec-
ommend MUGA as a third-line technique to assess LVEF, i.e. if TTE and 
CMR are unavailable or in case of CMR contraindication.11,14 Of note, 
the guidelines mention the potential interest of assessing the myocar-
dial 18F-FDG uptake during intercourse PET/computed tomography 
(CT), as its increase could indicate an LVEF decline85 and, therefore, 
trigger LVEF assessment.14 

Coronary artery disease 
Cancer is a prothrombotic condition associated with enhanced platelet re-
activity and circulating procoagulant products, which increase the athero-
sclerotic burden.86 Additionally, cancer treatments themselves 
(particularly chest radiotherapy) induce endothelial injuries, favouring vaso-
spasm and thrombosis.87–89 Hence, screening for ischaemic heart diseases 
(IHD) is recommended in patients with intermediate-to-high pre-test like-
lihood46 undergoing heart-damaging cancer therapy,8 especially anthracy-
clines and chest radiotherapy.90,91 Such screening can be done with 
SPECT myocardial perfusion imaging (MPI), a mainstay in this indication.92 

SPECT myocardial perfusion abnormalities can appear either during 
radiotherapy93 or later, up to 20 years after treatment completion.94 

Most perfusion abnormalities develop in the apical territory,89,95 indi-
cating left anterior descending artery damage.96,97 Accordingly, myo-
cardial perfusion impairment is more prevalent in left-sided than 
right-sided chest cancer,89,98 a risk that linearly correlates with cardiac 
exposure volume.94,99 In patients with left-sided breast cancer, an irra-
diated cardiac volume of >5% is associated with significantly higher 
rates of perfusion abnormalities than with lower volumes.100 

Interestingly, in cancer patients, SPECT-detected myocardial ischaemia 
does not correlate well with underlying obstructive CAD,97 highlighting 

Figure 4 Algorithm proposal for non-invasive imaging in patients undergoing anticancer treatment. Abbreviations: 18F-FDG, fluor-18-radiolabelled 
fluorodeoxyglucose; CACS, coronary artery calcium score; CAD, coronary artery disease; CCTA, coronary computed tomography angiography; CMR, 
cardiac magnetic resonance; CTRCD, cancer-treatment-related cardiac dysfunction; LVEF, left ventricular ejection fraction; SNMMI, Society of Nuclear 
Medicine and Molecular Imaging; MPI, myocardial perfusion imaging; MUGA, multigated acquisition; PET, positron emission tomography; SPECT, single- 
photon emission computed tomography. *The choice of imaging modality should be based on symptoms, known CAD, pretest probability, local avail-
ability and expertise, and patient characteristics.   
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the importance of coronary microvascular dysfunction (CMVD) and 
coronary spasm in this population.101–103 

PET MPI is the reference non-invasive modality to diagnose CMVD, 
using 13N-ammonia (13N-NH3), 

82Rubidium (82Rb), and 15O-water 
(15O-H2O) radiotracers.104 PET MPI allows for measuring myocardial 
blood flow (MBF) and coronary flow reserve (CFR), which are central 
to CMVD diagnosis.105 In patients undergoing chest radiotherapy, PET 
MPI shows an inverse correlation between the mean radiation dose to 
the heart and CMVD.106,107 Moreover, MBF could have prognostic va-
lue, with low CFR values being associated with an increased cumulative 
incidence of MACE in breast cancer patients.108 

Another prognostic parameter is the coronary artery calcium score 
(CACS). CACS is obtained from a non-enhanced CT and quantifies 
the degree of coronary artery calcification, expressed with the 
Agatston score.109 CACS = 0 in asymptomatic patients is associated 
with a very low prevalence of severe coronary stenosis and high-risk pla-
que features.110 Conversely, an Agatston score of >400 is predictive of 
MACE, even for normal MPI.111 CACS can easily be yielded from the 
low-dose CT of PET/CT and SPECT/CT cameras, showing high agree-
ment with the one obtained from standard non-enhanced scans.112–114 

Since 18F-FDG PET/CT is part of routine oncological work-up, cardiovas-
cular risk stratification with CACS could simultaneously be performed 
without additional radiation or cost.115 

Beyond myocardial perfusion, nuclear MPI can also estimate 
LVEF116,117 (Figure 2). However, contrary to MUGA, MPI indirectly es-
timates cardiac volumes based on myocardial wall motion. In case of in-
farction, the necrotic segment is devoid of signal, leading to 
overestimating LV volumes.118 Another limitation of SPECT MPI is its 
inability to assess RVEF. Although more accurate,119–121 CZT cameras 
give lower values than conventional SPECT cameras,122 stressing the 
importance of performing serial follow-up using the same modality. 

Nuclear MPI is only one of the tools available for myocardial ischae-
mia screening alongside stress echocardiography, and CMR. 
Additionally, contrast-enhanced coronary computed tomography angi-
ography (CCTA) is an alternate tool which provides information on 
coronary plaque burden and coronary stenosis assessment.11,14 

Although the recent European guidelines on cardio-oncology do not 
give strict recommendations on which modality to prefer in which set-
ting,11 echocardiography and CMR remain the frontline techniques in 
this setting.14 Overall, three scenarios can be distinguished: baseline 
screening, follow-up during treatment, and end-of-treatment surveil-
lance14 (Figure 4). 

Baseline screening should always be considered in the oncological 
population, given their increased CAD risk.14 CACS assessment is an 
easy and minimally invasive way of characterizing the baseline CAD 
risk. If CACS = 0, the risk of dying from CAD within 5 years of cancer 
diagnosis remains below the mortality risk from cancer itself; conversely, 
if CACS > 300, the 5-year CAD mortality risk exceeds the cancer mor-
tality risk,123 prompting more aggressive management.14 As abovemen-
tioned, CACS can be extracted from 18F-FDG PET’s low-dose CT 
without additional scanning time, cost, or radiation.115 As the mainstay 
baseline staging exam of most cancer types, 18F-FDG-PET-based 
CACS appears as a reasonable option for baseline CAD risk assessment. 
Advanced explorations should be preferred in patients with a higher 
baseline CAD risk. In nononcological settings, non-enhanced CT and 
CCTA are the first-line exam for detecting coronary calcifications and 
coronary stenosis in patients with low-to-intermediate CAD risk.92 

Given the increased CAD risk in oncological patients, detection of coron-
ary stenosis using CCTA can be discussed in symptomatic patients with 
no CAD history.14 However, this comes at the expense of increased ra-
diation exposure.124 Stress echocardiography is indicated in patients with 
intermediate-to-high CAD probability undergoing ischaemia-inducing 
chemotherapies, such as fluorouracil, bevacizumab, sorafenib, and suniti-
nib.125 In addition to ischaemia, stress echocardiography could unveil 

patients at risk of developing CTRCD,126,127 a 5-unit fall in LV contractile 
reserve during dobutamine echocardiography predicting the subsequent 
LVEF drop.128 Myocardial perfusion CMR imaging using pharmacological 
stress is also an option, but its use for systematic screening is conflicted by 
its relatively low availability.14 SPECT MPI is a well-validated and widely 
accessible modality that additionally provides CACS in case of hybrid 
SPECT/CT.113 

During treatment, there is no clear recommendation as to which 
modality to prioritize and the exploration frequency, which will depend 
on the clinical presentation and the available modalities. 

After treatment completion, CCTA is an option for CAD identifica-
tion,14 particularly in patients with known CAD, whose plaque progres-
sion can be accelerated by anticancer treatment, and in young patients 
treated with chest radiotherapy, i.e. at risk of perivascular fibrosis.14,90 

Radiotherapy can also induce valve leaflet calcification, which can be as-
sessed by CT.90 A limitation of CCTA is for the routine detection of 
microvascular dysfunction, although dynamic CT MPI is promising in 
this regard.129–132 Conversely, CMR detects both segmental ischaemia 
and CMVD,133 with the advantage over nuclear MPI of being devoid of 
radiation exposure. Still, CMR assessment of MBF remains in the re-
search realm,134 and PET MPI is the reference exam for CMVD,104 dis-
playing higher accuracy, reproducibility, and prognostic value than 
CMR.135,136 This favours PET in patients at risk of CMVD, particularly 
women with breast cancer108,137 and patients who underwent chest 
radiotherapy.106,138 

Myocarditis 
The last years have witnessed the development of immunotherapy, a 
new class of anticancer treatment that leverages the immune system 
to harness cancer progression. The primarily used class of immuno-
therapy is ICI. Immune checkpoints are T-lymphocyte-expressed 
receptors that recognize ligands at the surface of normal cells. The 
receptor–ligand binding inhibits the T-cell, preventing it from 
targeting normal cells.139 Some cancer cells express immune- 
checkpoint-binding ligands and can thus trick and inhibit 
T-lymphocytes. ICI block the receptor–ligand bond, allowing T-cells 
to recognize and attack cancer cells.139 The downfall of lifting T-cell 
inhibition is that this may unleash IRAEs.140 Cardiovascular IRAEs 
occur with an incidence ranging from 1.14 to 5%140 and include 
notably myocarditis, pericarditis, vasculitis, and Takotsubo 
cardiomyopathy.141,142 

Diagnosing ICI-related myocarditis is challenging because of the vari-
ous presentations143 and the prolonged interval between drug admin-
istration and symptom onset.140 While CMR is the reference exam,144 

PET can also orient the diagnosis. Due to its availability and high uptake 
in inflammatory cells, 18F-FDG is a natural candidate in this indica-
tion,145 classically displaying focal or diffuse patchy myocardial 
18F-FDG uptake with no vascular systematization146 (Figure 5). 
Despite a good spatial agreement between 18F-FDG uptake and T2 hy-
perintensity/late gadolinium enhancement (LGE), the diagnostic accur-
acy of 18F-FDG PET/CT in myocarditis is low.148 Several factors might 
explain this, such as an inadequate high-fat/low-carbohydrate diet, the 
initiation of immunosuppressive treatment, and the delay between 
myocarditis onset and image acquisition. Acquisition timing is indeed 
critical, with a small series showing a 100% sensitivity when 18F-FDG 
PET was performed within 14 days of disease onset vs. 20% when per-
formed later.146 In 2019, Bonaca et al.147 proposed a definition of 
ICI-related myocarditis that includes 18F-FDG PET, with myocarditis 
deemed as possible in any ‘scenario meeting criteria for possible myo-
carditis (i.e. not explained by any other diagnosis such as acute coronary 
syndrome, trauma or Takotsubo cardiomyopathy on CMR, ultrasound, 
and cardiac biomarkers) with 18F-FDG PET showing patchy cardiac 
18F-FDG uptake without another explanation’.  
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Other promising radiotracers target somatostatin receptors (SSTRs) 
overexpressed at the surface of vascular macrophages.149 The lower albeit 
variable150 physiologic myocardial uptake of SSTR radiotracers reduces the 
risk of false positives. In a small population of nine patients, gallium-68- 
radiolabelled DOTA0-D-Phe1-Tyr3-octreotide (68Ga-DOTATOC) 
PET/CT had a 100% sensitivity to diagnose ICI-related myocarditis, des-
pite the initiation of steroid and immunosuppressive therapy.151 Recently, 
a 68Ga-radiolabelled tracer targeting fibroblast activation protein inhibi-
tors (68Ga-FAPI) was introduced in oncological diseases.152,153 In three 
patients fulfilling the Bonaca et al.147 criteria for definite ICI-related myo-
carditis, focal myocardial uptake of 68Ga-FAPI identified cardiac remodel-
ling territories.154 Similarly, the upregulation of translocator protein-18 
kDa (TSPO) and chemokine receptors types 4 and 12 in inflammatory 
cells suggests a role for radiolabelled TSPO and 68Ga-pentixafor in myo-
carditis,155,156 although dedicated studies still need to be performed. 
Along the same line, radiotracers targeting the C-X-C motif chemokine 
receptor 4 overexpressed by leucocytes represent an exciting approach 
to diagnosing myocardial inflammation.157 Finally, novel inflammation 
radiotracers targeting CD4 and CD8 cells, zirconium-89-radiolabelled 
desferrioxamine-CD4 (89Zr-DFO-CD4) and 89Zr-DFO-CD8a, are un-
der investigation and hold the potential to image myocarditis.158 Their 

high specificity could prove particularly useful in ICI-related myocarditis. 
Indeed, the reference treatment for myocarditis is steroids, which allevi-
ate the antitumour effect of ICI.159 Therefore, establishing the diagnosis 
with certainty might reduce unnecessary immunosuppressive therapies 
or withholding ICI. 

In practice, however, the guidelines recommend echocardiography 
and CMR as first-line examinations in suspected ICI-associated myocar-
ditis and recommend cardiac PET only if CMR is non-available or con-
traindicated11 (Figure 4). Echocardiography’s primary role is to rule out 
non-inflammatory cardiac diseases and serve as a reference exam for 
LVEF monitoring.160 Serial echocardiography could also be discussed 
in patients at high risk of myocarditis, i.e. patients undergoing a combin-
ation of ICI, ICI with another cardiotoxic regimen, or in case of pre- 
existing CVD.14 The mainstay examination for diagnosing myocarditis 
remains CMR, using the Lake Louise criteria,161 updated in 2018 with 
the implementation of mapping techniques.160 The Lake Louise criteria 
consist of a triad combining oedema (as assessed by T2-weighted acqui-
sitions), hyperaemia [reflected by early gadolinium enhancement 
(EGE)], and necrosis (set by LGE). The presence of ≥2 out of 3 criteria 
in a suggestive context establishes the diagnosis of myocarditis with 
high sensitivity and specificity.144 Mapping techniques improve intra- 

Figure 5 Myocarditis. Twenty-seven-year-old dyspnoeic woman with widespread concave ST elevation on ECG and increased C-reactive protein 
(131 mg/L, N < 4), suggestive of myocarditis. 18F-FDG PET revealing diffuse heterogeneous (‘patchy’) myocardial 18F-FDG uptake [red arrows, (A) max-
imal intensity projection, (B), and (D) axial slices]. Non-enhanced CT showing pericardial effusion [(C ), yellow arrow] without 18F-FDG uptake [(D), 
yellow arrow] related to pericarditis. According to the Bonaca et al.147 criteria, possible myocarditis was retained.   

Tales from the future—nuclear cardio-oncology                                                                                                                                                  9 
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjcim
aging/advance-article/doi/10.1093/ehjci/jead168/7226632 by U

niversity Library Zurich / Zentralbibliothek Zurich user on 06 August 2023



and inter-observer diagnostic confidence, the specificity for detecting 
active inflamamtion and edema, and improve the detection of milder 
forms of myocarditis.160 Additionally, reduced GLS and global circum-
ferential strain could help risk-stratify patients with ICI myocarditis, 
the magnitude of strain reduction being predictive of MACE.162 

Nonetheless, the updated Lake Louise criteria might not be as perfor-
mant in ICI myocarditis. Indeed, recent data show the sensitivity of CMR 
to be lower in the latter, possibly because of reduced LGE in the early 
phase.163,164 Detecting LGE is particularly challenging in borderline 
forms of myocarditis,165 which display less necrotic insult and patchy 
distribution. Such patients might benefit from 18F-FDG PET, given the 
increased 18F-FDG uptake in myocarditis areas devoid of LGE, which 
could also guide potential myocardial biopsies.148 However, no dedi-
cated study has assessed the diagnostic performance of 18F-FDG PET 
in this specific subgroup. 18F-FDG PET could also help distinguish chron-
ic myocarditis from the scarred non-inflammatory myocardium, i.e. 
healed myocarditis.166 Indeed, LGE and strain do not clearly differenti-
ate between chronic and healed myocarditis,167,168 whereas 18F-FDG 
uptake decreases in the latter,166 a feature that could help monitor 

treatment response to immunosuppressive therapy.169 Given their 
complementary diagnostic values, studies have evaluated the value of 
hybrid 18F-FDG PET/CMR in myocardial inflammatory diseases,170,171 

showing an incremental detection of cases with hybrid PET/CMR 
over single modalities alone.172 

Early signs of cardiac dysfunction 
Numerous efforts aim at detecting early-stage cardiac impairment, i.e. 
when anticancer treatment is still modifiable or cardioprotective mea-
sures can be introduced8 (Figure 6). 

Cardiac diastolic function 
Diastolic dysfunction is a potential early marker of LV 
dysfunction,173–175 which MUGA can assess. MUGA-derived diastolic 
function parameters include the peak filling rate, time-to-peak filling 
rate, and first third filling fraction57,176–178 that deteriorate before 
treatment-induced systolic dysfunction.177,179 However, the inter- 

Figure 6 Main metabolic targets of early cardiac toxicity and corresponding radiotracers. Abbreviations: 11C-HED, carbon-11-radiolabelled hydro-
xyephedrine; 18F-AIF-NOTA-FAPI-04, fluor-18-labelled 1,4,7-triazacyclononane-N,N′,N″-triacetic acid-conjugated FAP inhibitor 04; 18F-CP18, 
fluor-18-radiolabelled caspase 3 substrate; 18F-DHMT, fluor-18-radiolabelled 6-(4-((1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)methoxy) 
phenyl)-5-methyl-5,6-dihydrophenanthridine-3,8-diamine; 18F-FDG, fluor-18-radiolabelled fluorodeoxyglucose; 18F-FTPP+, fluor-18-radiolabelled 
(4-fluorophenyl)triphenylphosphonium; 18F-FPBT, fluor-18-radiolabelled 3-(3-fluoropropyl)-2-phenyl-2,3-dihydrobenzo[d]thiazole; 68Ga-FAPI, 
gallium-68-radiolabelled fibroblast activation protein inhibitor; 99mTc, technetium-99m; 111In, indium-111; 123I-MIBG, iodine-123 metaiodobenzylgua-
nidine; BMIPP, beta-methyl-iodine-123 phenylpentadecanoic acid; H2O2, hydrogen peroxide; O2, oxygen; O2-, ion oxide; PET, positron emission tom-
ography; ROS, reactive oxygen species; SOD, superoxide dismutase; SPECT, single-photon emission computed tomography.   
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and intra-observer reproducibility of ERNA-based diastolic function is 
moderate,57 questioning its utility in the early detection of CTRCD. 
CZT-based MUGA is promising, providing a highly reproducible assess-
ment of diastolic function in cancer patients.180 Still, MUGA is not rou-
tinely used to assess diastolic function, which can easily be obtained 
from echocardiography.78 However, echocardiography is strongly 
operator-dependent, hampering its interest in surveillance.74 CMR 
can also assess diastolic function based on LV mass and hypertrophy, 
LA size and function, mitral inflow and pulmonary venous velocity pro-
files, as well as myocardial deformation imaging with strain. Additionally, 
T1 mapping and ECV can be used.181 CMR presents the advantage over 
echocardiography of highly reproducible and accurate volume mea-
surements without geometrical or flat profile assumptions.181 CMR’s 
downsides are its restricted availability and the length of sequence ac-
quisitions and image post-processing, limiting its routine use.181 

Cardiac sympathetic innervation 
Iodine-123 metaiodobenzylguanidine (123I-MIBG) reflects the uptake, 
storage, and release of norepinephrine in the synaptic cleft,182 hence al-
lowing cardiac sympathetic innervation imaging.183 The main parameter 
is the heart-to-mediastinum ratio (HMR),184,185 i.e. the ratio between 
cardiac 123I-MIBG uptake and a mediastinal reference region of interest. 
A diminished HMR indicates cardiac sympathetic denervation, either 
functional (downregulation of post-synaptic β-adrenergic receptors) 
or due to direct damage (for example, after toxic treatments186). 

In patients receiving anthracycline, the HMR drops before 
LVEF,187,188 highlighting 123I-MIBG’s potential role in early damage de-
tection. Additionally, serial follow-up with cardiac 123I-MIBG scintig-
raphy shows a slight dose-dependent sympathetic impairment 
following anthracycline administration,187,189,190 suggesting a role in 
damage quantification. 

PET radiotracers can also assess cardiac sympathetic activity,191,192 

notably 6-fluoro-18F-L-dihydroxyphenylalanine (18F-DOPA), an 
analogue of L-dihydroxyphenylalanine (L-DOPA) routinely used to in-
vestigate neuroendocrine tumours.193 Another norepinephrine ana-
logue is carbon-11-radiolabelled hydroxyephedrine (11C-HED),194 in 
which the need for on-site production limits clinical use. To date, how-
ever, no study has specifically studied these radiotracers to diagnose 
CTRCD. 

Myocardial metabolism 
Cardiac metabolism is a balance between various fuels, depending on 
the substrate’s bloodstream availability, dietary conditions, and under-
lying myocardial conditions.195 Under physiologic conditions, free fatty 
acids (FFAs) and glucose represent the primary cardiac energy 
sources.196 Myocardial glucose consumption can be imaged with 
18F-FDG and FFA uptake with beta-methyl-iodine-123 phenylpentade-
canoic acid (BMIPP).197 In the fasting phase, FFAs are abundantly avail-
able to the heart,196 rendering BMIPP more advantageous for assessing 
cardiac metabolism than 18F-FDG.198 Nonetheless, BMIPP is only rou-
tinely used in Japan,199 and one study reported BMIPP uptake reduction 
in patients receiving taxanes.200 Conversely, 18F-FDG PET is largely 
available and part of the routine oncological assessment. In patients 
treated with doxorubicin, an increased LV 18F-FDG uptake from base-
line to end-of-treatment PET is associated with a subsequent LVEF 
drop85 and MACE.201 Moreover, increased RV 18F-FDG uptake pre-
dicts a higher cardiotoxicity risk.202 Similarly, in chest radiotherapy pa-
tients, focal cardiac 18F-FDG uptake is associated with myocardial 
damage,203–205 a study pointing towards a relation between the radio-
therapy dose and the intensity of 18F-FDG uptake.206 Focal 18F-FDG 
cardiac uptake in cancer patients correlates highly with perfusion ab-
normalities on SPECT MPI,207 giving potential mechanistic insights for 
the subsequent cardiotoxicity. Still, a significant drawback of 18F-FDG 

PET is the high variability of cardiac uptake with diet and insulinae-
mia,208 which could be reduced by prolonged fasting.209 Additionally, 
18F-FDG myocardial uptake increases in the ischaemic myocardium, 
which, although limiting the specificity of 18F-FDG patterns, could iden-
tify ischaemia onset.210 

Alternatively, carbon-11 (11C) radiotracers can be used to image 
myocardial metabolism. 11C-acetate is taken up by cardiomyocytes 
and converted to acetyl-CoA, a substrate for energy production via 
the tricarboxylic acid cycle.211 The rate of 11C-acetate uptake is a mark-
er of myocardial oxidative metabolism.212 In a pre-clinical model of 
mice undergoing treatment by tyrosine kinase inhibitors, the myocar-
dium showed a decrease in 11C-acetate uptake concomitantly to an in-
crease in 18F-FDG uptake.213 The short half-life of 11C (∼20 min), 
although interesting from a radiation exposure perspective, is the 
main factor limiting its routine use, as 11C requires an on-site 
cyclotron.211 

Mitochondrial metabolism 
The bottleneck of all cellular energy pathways is the mitochondrial pro-
duction of ATP. Several chemotherapies affect ATP production and 
lead to cell death, generally by increasing reactive oxygen species 
(ROS) production.198 A PET radiotracer targeting ROS has recently 
been developed, named 18F-6-(4-((1-(2-fluoroethyl)-1H-1,2,3-triazol- 
4-yl)methoxy)phenyl)-5-methyl-5,6-dihydrophenanthridine-3,8-diamine 
(18F-DHMT). In a pre-clinical rodent model of anthracycline-induced 
cardiotoxicity, 18F-DHMT evidenced an increased myocardial ROS pro-
duction before any LV drop.214 Another ROS-targeting radiotracer is 
18F-3-(3-fluoropropyl)-2-phenyl-2,3-dihydrobenzo[d]thiazole (18F-FPBT), 
in which myocardial uptake is also increased in rats receiving anthracy-
cline.215 Deregulation of cardiomyocyte homeostasis by chemotherapy 
can manifest as mitochondrial membrane dysfunction, which can be ex-
plored with 18F(4-fluorophenyl)triphenylphosphonium (18F-FTPP+). In 
a swine model receiving intracoronary infusions of anthracycline, 
18F-FTPP+ showed a partial mitochondrial depolarization in myocardial 
areas distal to the infused vessel.216 Recently, a radiotracer targeting 
TSPO, a translocator protein expressed in mitochondrial-activated 
microglia, has been validated in a model of myocardial infarction.217 

This pre-clinical study showed that an early myocardial uptake of 
18F-radiolabelled TSPO on PET predicted the subsequent LVEF 
reduction. 

Cell death 
A hallmark apoptosis feature is the exposition of phosphatidylserine at 
the cellular surface.218 Technetium-99m (99mTc)-radiolabelled annexin 
V is a phosphatidylserine ligand that detects apoptotic cardiomyo-
cytes.219 In rats receiving doxorubicin, 99mTc-radiolabelled annexin V 
evidenced drug-induced toxicity in a dose-dependent manner before 
any functional impairment on echography.220 Recently, PET apoptosis 
radiotracers have also been developed.221 In a mouse model of experi-
mentally induced anthracycline cardiotoxicity, 18F-CP18, a substrate of 
the caspase 3 enzyme present in apoptotic cells,222 evidenced apoptosis 
before any LVEF drop.223 Another target is myosin, externalized by 
necrotic cells after membrane rupture. Preliminary clinical studies 
showed that increased myocardial uptake of an indium-111 
(111In)-radiolabelled antimyosin antibody preceded LVEF modifications 
in patients receiving anthracycline.189,224,225 

Myocardial fibrosis 
The cardiomyocyte loss induced by anticancer treatments is accompan-
ied by myocardial fibroblast activation, leading to fibrotic ventricular re-
modelling, a condition of increased risk for heart failure.226 

Although echocardiography and CMR can detect cardiac fibrosis,  
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even at an early stage with mapping techniques,227,228 fibrosis still 
indicates myocardial damage. Therefore, detecting the onset of fibrotic 
replacement could help initiate cardiac treatments at an early and re-
versible stage.227 Fibroblast activation protein (FAP) is a transmem-
brane protease with enhanced expression in activated fibroblasts.229 

Recently, pre-clinical findings evidenced intense 68Ga-FAPI myocardial 
uptake in areas of activated fibroblasts, conversely to no uptake in areas 
of advanced fibrosis.230–232 Similar incidental cases of 68Ga-FAPI cardiac 
uptake have been reported in cancer patients, unveiling myocardial is-
chaemia.233 This suggests that 68Ga-FAPI PET, likely to be used for can-
cer staging, could help simultaneously detect early stages of myocardial 
fibrosis. Moreover, 68Ga-FAPI myocardial uptake could pre-date any 
LVEF decrease, suggesting a potential role in cardiotoxicity predic-
tion.234 Similarly, an 18F-radiolabelled FAPI tracer (18F-AlF-NOTA- 
FAPI-04) detects radiation-induced myocardial ischaemia before LVEF 
decreases, comforting the potential role of FAPI radiotracers for the 
early identification of cardiac damage.235 

Future directions 
One next step is to stratify the cardiotoxicity risk before treatment ini-
tiation. Predictive scores based on CVRFs and biological mar-
kers94,236,237 could be augmented by non-invasive imaging. For 
example, myocardial 18F-FDG uptake obtained from routine staging 
18F-FDG PET can help stratify the cardiovascular risk with no additional 
cost or radiation burden.207 Cardiovascular risk stratification could also 
benefit from hybrid PET/CMR by combining CMR mapping techniques 
with the prognostic value of myocardial 18F-FDG uptake to predict the 
MACE risk.238,239 

Artificial intelligence (AI) is a potential game changer in cardio- 
oncology.240,241 In 2619 cancer-free patients explored with SPECT 
MPI, a machine learning analysis combined with clinical data outper-
formed human analysis for MACE prediction.242 Moreover, the higher 
reproducibility of machine learning could improve diagnostic confi-
dence in uncertain myocarditis patterns, such as patchy 18F-FDG myo-
cardial uptake. AI also improves the characterization of several types of 
malignant masses,243–245 which might benefit cardiac tumour 
characterization. 

In the era of precision medicine, where similar phenotypes arise from 
different genomic, metabolomic, and proteomic profiles, it will be cru-
cial to tailoring the diagnosis to the tumour’s ‘-omic signature’.246 As a 
metabolic tool targeting specific pathophysiological pathways, nuclear 
imaging will most certainly play a central role in precision 
cardio-oncology.246 In addition to mapping cardiotoxicity, these probes 
might play a theranostic role, as with SSTR radiotracers, which help se-
lect patients in whom peptide receptor radionuclide therapy is indi-
cated.247 An unsuccessful attempt in this sense has been made with 
111In-labelled trastuzumab scintigraphy to predict cardiotoxicity from 
trastuzumab.248 Yet, the theranostic field is still in its infancy, and the 
wideness of metabolic targets assessable with nuclear radiotracers ren-
ders this goal within reach. 

Conclusion 
The progress in anticancer treatment is progressively turning cancer 
into a chronic condition. Consequently, the new challenge in this popu-
lation is slowly shifting towards tackling other mortality causes, particu-
larly CVD. Nuclear imaging allows for diagnosing various cardiac 
complications of anticancer therapies, even at an early stage, is useful 
for disease monitoring, and is a promising tool for the risk stratification 
of patients receiving cardiotoxic treatments. In addition, nuclear im-
aging has the unique ability to target specific metabolic links in the car-
diotoxicity cascade for either diagnosis or treatment. Leveraging 
radiotracers already used routinely in patients with cancer, such as 

18F-FDG and MPI tracers, could benefit this population with no add-
itional cost or radiation exposure. Consequently, in the expanding field 
of cardio-oncology, nuclear medicine remains a central player that will 
most certainly remain at the forefront of the diagnostic armamentarium 
alongside cross-sectional imaging. 
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